За счет чего корабль держится на воде – Почему корабли держатся на воде?

Содержание

Почему корабли держатся на воде?

Корабли, лодки, плоты и другие тела удерживаются на плаву из-за наличия у воды выталкивающих свойств. Как и все остальные жидкости, вода создает направленное вверх давление, которое может поддерживать помещенные в воду твердые предметы.

У кораблей в процесс обеспечения плавучести вовлечено несколько факторов, в том числе форма судна, его прочность и предусмотренные средства для противодействия волнам. В общем случае, корабль будет держаться на воде, если объем воды, который он вытесняет, весит больше, чем сам корабль. У такого корабля направленная вверх сила давления воды на корпус будет преодолевать направленную вниз силу тяжести, которая может считаться приложенной в одной точке, называющейся центром тяжести. Говорят, что корабли сохраняют устойчивость (на языке специалистов — остойчивость), если после накреняющих силовых воздействий таких факторов, как волны или ветер, они могут вернуться на ровный киль. Если корабль неправильно спроектирован или загружен, подобные внешние воздействия могут привести к потере остойчивости и корабль может пойти ко дну.

Закон Архимеда

 

Подвешенный на пружинных весах кубик (рисунок под текстом) весит в воде меньше (правая часть рисунка), чем в воздухе (левая часть рисунка). При погружении кубик вытесняет объем воды, вес которого равен уменьшению реса кубика. Связь между объемом погруженного тела и силой, выталкивающей это тело вверх, была впервые описана греческим математиком Архимедом в третьем столетии до нашей эры.

Сила тяжести против выталкивающей силы

Слабо загруженный корабль имеет небольшую осадку, так как при большем погружении корпуса выталкивающая сила (синяя стрелка) начинает превышать силу тяжести (красная стрелка). Полностью загруженный корабль сидит в воде глубже, вытесняя больший объем воды, чем легкий корабль.

Поддержание равновесия

  1. Когда корабль держится на поверхности воды вертикально, его центр тяжести и выталкивающая сила находятся на одной линии. Корабль находится в равновесии. 
  2. Когда корабль накреняется, выталкивающая сила смещается в сторону; в результате, выталкивающая сила давит вверх, сила тяжести тянет вниз и крен выправляется.
  3. Если центр тяжести накрененного корабля слишком сильно смещен вверх и расположен на слишком большом удалении от центра плавучести, корабль опрокинется.

Смещение центра тяжести

Три схематических разреза корабля на рисунке показывают, как загрузка влияет на остойчивость. Полный трюм корабля (ближний разрез) сводит центр тяжести и точку приложения выталкивающей силы (центр плавучести) близко друг к другу, делая корабль остойчивым. Накрененный волнами, такой корабль легко восстанавливает положение равновесия. В корабле с пустым трюмом (средний разрез), центры тяжести и плавучести отстоят друг от друга на большом расстоянии, поэтому корабль неустойчив. Вес заполненных водой балластных резервуаров (дальний разрез) восстанавливает остойчивость корабля.

Устройства для уменьшения качки

Два резервуара в корпусе (рисунок над текстом) помогают уменьшать бортовую качку. Вес воды, перетекающей из одного резервуара в другой, противодействует боковым ударам волн.

Носовой резервуар, попеременно заполняющийся водой и опорожняющийся, уменьшает килевую качку корабля в бурных морях.

information-technology.ru

Почему корабли не тонут 🚩 как не тонуть в воде 🚩 Разное

Почему не тонет корабль

Способность держаться на поверхности воды свойственна не только кораблям, но и некоторым животным. Взять хотя бы водомерку. Это насекомое из семейства полужесткокрылых уверенно чувствует себя на водной глади, перемещаясь по ней скользящими движениями. Такая плавучесть достигается благодаря тому, что кончики лапок водомерки покрывают жесткие волоски, которые не смачиваются водой.

Ученые и изобретатели надеются, что в будущем человек сможет создать транспортное средство, которое будет передвигаться по воде по принципу водомерки.

Но в отношении традиционных судов принципы бионики не действуют. Объяснить плавучесть корабля, сделанного из металлических деталей, сможет любой ребенок, знакомый с основами физики. Как гласит закон Архимеда, на тело, которое погружается в жидкость, начинает действовать выталкивающая сила. Ее величина равна весу воды, вытесняемой телом при погружении. Тело не сможет утонуть, если сила Архимеда превышает вес тела или равна ему. По этой причине корабль остается на плаву.

Чем больше объем тела, тем больше воды он вытесняет. Железный шар, опущенный в воду, тут же утонет. Но если его раскатать до состояния тонкого листа и сделать из него полый внутри шар, то такая объемная конструкция будет держаться на воде, лишь слегка в нее погрузившись.

Суда с металлической обшивкой строят таким образом, чтобы в момент погружения корпус вытеснял очень большое количество воды. Внутри корабельного корпуса имеется множество пустых областей, заполненных воздухом. Поэтому средняя плотность судна оказывается значительно меньше, чем плотность жидкости.

Как сохранить плавучесть судна?

Корабль держится на плаву, пока его обшивка исправна и не имеет повреждений. Но судьба судна окажется под угрозой, стоит ему получить пробоину. Сквозь прореху в обшивке внутрь судна начинает поступать вода, заполняя его внутренние полости. И тогда корабль вполне может затонуть.

Чтобы сохранить плавучесть судна при получении пробоины, его внутреннее пространство стали разделять перегородками. Тогда небольшая пробоина в одном из отсеков не угрожала общей живучести судна. Из отсека, который подвергался затоплению, с помощью насосов откачивали воду, а пробоину старались заделывать.

Хуже, если повреждалось сразу несколько отсеков. В этом случае судно могло утонуть из-за потери равновесия.

В начале XX века профессор Крылов предложил умышленно затапливать отсеки, расположенные в части судна, которая противоположна тем полостям, что подверглись затоплению. Корабль при этом несколько осаживался в воду, но оставался в горизонтальном положении и не мог утонуть в результате переворачивания.

Предложение морского инженера было столь необычным, что на него долгое время не обращали внимания. Только после поражения российского флота в войне с Японией его идею взяли на вооружение.

Издревле человечество стремилось осваивать речные и морские просторы планеты. Первые ареалы расселения человека были образованы на берегах рек, озер, морей. Речные и морские пути – это первейшие транспортные магистрали, используемые человеком. Для освоения водных ресурсов развилась целая наука – судостроение. Постройка кораблей основана на целом комплексе наук и ремесел, опыте специалистов и технических достижениях

История судостроения


Историческая наука не может определить точных дат начала строительства судов. Но во многих письменных источниках упоминается о морских судах и существовании торговых путей, которые связывали между собой человеческие поселения. Эти свидетельства подтверждают высокие достижения древних кораблестроительных технологий. Первые простейшие суда изобрели задолго до колесной повозки.

В мифологии приведены детальные описания постройки кораблей. Уже примерно 2500 лет назад корабли различались по своему назначению - для перевозки грузов и для транспортировки пассажиров. Корабли приводились в действие шестами, веслами, парусами. Уже позднее стали строить судна для отдыха богатых людей. Основным материалом для постройки кораблей было дерево. Современные суда строят из металла, причем толщина каркаса может быть такой, что ее практически невозможно пробить.

Как корабль держится на воде


Способность корабля плавать в определенном положении определяется термином «плавучесть».
Плавучесть — свойство погруженного в жидкость тела оставаться в равновесии, не выходя из воды и не погружаясь дальше, то есть плавать.

Плавучесть судна обоснована тем, что сила тяжести судна уравновешивается выталкивающими силами воды, которые возникают в процессе гидростатического давления на корпус корабля. Эту взаимосвязь вывел в своем законе древнегреческий ученый Архимед. Выталкивающие силы воды зависят от плотности жидкости и объема корпуса корабля. Под действием этих сил корабль может двигаться.
Гидростатическое давление - это отношение сил к площади тела внутри любой жидкости, обусловленные весомостью жидкости.

Имеется несколько условий для плавания судна: если сила тяжести корабля больше гидростатического давления, то судно будет тонуть; если сила тяжести корабля равна гидростатическому давлению, то судно будет находиться в равновесии в любой точке жидкости, будет плавать внутри жидкости; если сила тяжести меньше гидростатических сил, то судно будет держаться на поверхности.

Корабли по своей массе действительно тяжелые, но у них достаточный запас воздуха внутри корпуса и высокие борта. Сила тяжести любого судна меньше гидростатических сил воды, поэтому корабли держатся на воде. Если превысить грузоподъемность судна, то сила тяжести будет больше воздействия гидростатических сил, и корабль затонет. Аналогичная ситуация возникнет, если судно получило пробоину. Корпус наполнится водой, сила тяжести увеличивается, корабль тонет.

Современные океанские лайнеры по своим характеристикам выгодно отличаются от тех парусных судов, которые бороздили морские просторы несколько веков назад. Казалось бы, нынешние технологии должны обеспечить кораблям высокую живучесть и непотопляемость. Однако и теперь морские суда время от времени тонут. Причины морских катастроф могут быть самыми разными.

Инструкция

Современные суда оснащают самыми совершенными навигационными системами. Материалы, из которых изготовляют корпуса кораблей, отличаются высокой прочностью, устойчивостью к износу и повреждениям. Но время от времени в печати появляются печальные сообщения о гибели морских судов. Эти неприятности случались на море много веков назад, невозможно полностью исключить морские катастрофы и в XXI столетии.

Самая распространенная причина происходящих с кораблями катастроф заключается в пренебрежительном отношении экипажа к правилам мореходства. Опытные моряки знают, самое безопасное место для корабля – это суша. В море или океане корабль всегда подстерегают многочисленные неприятности. Особенно опасно плавание возле прибрежной полосы. Именно здесь чаще всего встречаются сильные течения, отмели и скалы, которые могут повредить судно.

Действительно, очень часто судно получает неустранимые повреждения, когда на полном ходу натыкается на препятствие. Обшивка корпуса достаточно крепка, но и она имеет предел прочности. Если судно получило серьезную пробоину, в трюм начинает поступать вода, которая заполняет отсеки. По этой причине судно теряет устойчивость и вполне может перевернуться.

Чтобы снизить вероятность затопления, внутреннее пространство современных кораблей стараются делить на герметичные отсеки, внутри которых устанавливают мощные насосы, способные откачать воду. Хуже всего, когда пробоина настолько велика, что помпы не могут справиться с нагрузкой. Большую прореху в обшивке заделать в море практически невозможно. Экипажу остается надеяться только на спасательные средства.

Любой корабль проектируется так, чтобы он имел определенный запас прочности и плавучести. Если поврежденное судно оказывается в океанских просторах в условиях сильного волнения или даже настоящего шторма, шансы на то, что корабль останется на плаву, уменьшаются. В условиях мощных волн некоторые суда, имеющие узкий и длинный корпус, вполне могут переломиться пополам. Итогом становится неминуемое погружение корабля под воду.

Еще одна из причин затопления корабля – неправильно размещенный и небрежно закрепленный груз. При шторме содержимое трюма вполне может переместиться в сторону, что нередко приводит к возникновению сильного крена. Если нагрузка на один из бортов становится критической, корабль способен опрокинуться набок и даже перевернуться вверх дном, после чего судно может пойти ко дну.

Полностью гарантировать безопасность при движении корабля по водным просторам нельзя. Но можно снизить вероятность трагедии, если неукоснительно соблюдать все правила вождения судов, выработанные многими поколениями мореходов, и с предельным вниманием отнестись к изменяющимся условиям, в которых проходит плавание.

www.kakprosto.ru

Почему корабли держатся на воде?

Корабли, лодки, плоты и другие тела удерживаются на плаву из-за наличия у воды выталкивающих свойств. Как и все остальные жидкости, вода создает направленное вверх давление, которое может поддерживать помещенные в воду твердые предметы.

У кораблей в процесс обеспечения плавучести вовлечено несколько факторов, в том числе форма судна, его прочность и предусмотренные средства для противодействия волнам. В общем случае, корабль будет держаться на воде, если объем воды, который он вытесняет, весит больше, чем сам корабль. У такого корабля направленная вверх сила давления воды на корпус будет преодолевать направленную вниз силу тяжести, которая может считаться приложенной в одной точке, называющейся центром тяжести. Говорят, что корабли сохраняют устойчивость (на языке специалистов — остойчивость), если после накреняющих силовых воздействий таких факторов, как волны или ветер, они могут вернуться на ровный киль. Если корабль неправильно спроектирован или загружен, подобные внешние воздействия могут привести к потере остойчивости и корабль может пойти ко дну.

Закон Архимеда

 

Подвешенный на пружинных весах кубик (рисунок под текстом) весит в воде меньше (правая часть рисунка), чем в воздухе (левая часть рисунка). При погружении кубик вытесняет объем воды, вес которого равен уменьшению реса кубика. Связь между объемом погруженного тела и силой, выталкивающей это тело вверх, была впервые описана греческим математиком Архимедом в третьем столетии до нашей эры.

Сила тяжести против выталкивающей силы

Слабо загруженный корабль имеет небольшую осадку, так как при большем погружении корпуса выталкивающая сила (синяя стрелка) начинает превышать силу тяжести (красная стрелка). Полностью загруженный корабль сидит в воде глубже, вытесняя больший объем воды, чем легкий корабль.

Поддержание равновесия

  1. Когда корабль держится на поверхности воды вертикально, его центр тяжести и выталкивающая сила находятся на одной линии. Корабль находится в равновесии. 
  2. Когда корабль накреняется, выталкивающая сила смещается в сторону; в результате, выталкивающая сила давит вверх, сила тяжести тянет вниз и крен выправляется.
  3. Если центр тяжести накрененного корабля слишком сильно смещен вверх и расположен на слишком большом удалении от центра плавучести, корабль опрокинется.

Смещение центра тяжести

Три схематических разреза корабля на рисунке показывают, как загрузка влияет на остойчивость. Полный трюм корабля (ближний разрез) сводит центр тяжести и точку приложения выталкивающей силы (центр плавучести) близко друг к другу, делая корабль остойчивым. Накрененный волнами, такой корабль легко восстанавливает положение равновесия. В корабле с пустым трюмом (средний разрез), центры тяжести и плавучести отстоят друг от друга на большом расстоянии, поэтому корабль неустойчив. Вес заполненных водой балластных резервуаров (дальний разрез) восстанавливает остойчивость корабля.

Устройства для уменьшения качки

Два резервуара в корпусе (рисунок над текстом) помогают уменьшать бортовую качку. Вес воды, перетекающей из одного резервуара в другой, противодействует боковым ударам волн.

Носовой резервуар, попеременно заполняющийся водой и опорожняющийся, уменьшает килевую качку корабля в бурных морях.

information-technology.ru

Почему корабль не тонет: физика в деле

А вы когда-нибудь задумывались, почему корабль не тонет? Если построить плот из древесины, то он сможет благополучно плыть по воде. Но если смастерить его из металла или же камня, то он погрузится на дно. Объяснить подобное явление не составит труда. Ведь плотность камня или металла отличается от плотности дерева. Об этом рассказывают на уроках физики. Дело в том, что плотность дерева значительно меньше, чем плотность металла. При этом показатель выталкивающей силы воды значительно выше, чем показатель силы тяжести, которая действует на плот. С металлом же все несколько иначе. Его плотность достаточно высока, и выталкивающая сила не способна преодолеть силу тяжести. В результате этого плот тонет. Но почему корабль не тонет сейчас, когда изготавливают их именно из металла?

Если обшить дерево

В былые времена корабли строили только из древесины. Но все меняется. Теперь судна строят из более надежного и крепкого материала – металла. Но почему корабль не тонет? Он же получается тяжелее? В чем причина? Может, внутри судна больше древесины, чем металла?

Если взять дерево и обшить его очень тонким листовым металлом, то конструкция не будет тонуть. Это явление можно объяснить, проведя некоторые подсчеты. Итак, средняя плотность конструкции будет меньше, чем плотность воды. Вот простые цифры. Если взять массу дерева 100 килограмм при плотности в 600 килограмм на метр кубический, а металлическую обшивку весом в 20 килограмм и плотностью 7800 килограмм на метр кубический, то общий вес судна будет составлять всего 120 килограмм, а объем – 0,168 метров кубических. Остается найти среднюю плотность конструкции. Для этого нужно массу разделить на объем. В результате получается примерно 714 килограмм на метр кубический. Данный показатель меньше, чем у воды. Это говорит о том, что деревянное судно, предварительно обшитое листовым металлом, тонуть не будет. Ведь плотность воды составляет 1000 килограмм на метр кубический.

Современные конструкции

Конструкция корабля достаточно проста. Можно не обшивать дерево металлом. Достаточно оставить внутри конструкции пустую полость, в которую вода попадать не будет. Конечно, это выражение немного не правильно. Полость будет заполнена воздухом. Ведь плотность этой смеси веществ составляет всего 1,29 килограмм на метр кубический.

Вот почему корабль не тонет, находясь на большой глубине. Ведь внутри конструкции существуют полости больших размеров, которые заполнены воздухом. Благодаря этому, плотность всего корабля значительно меньше плотности воды. В результате этого выталкивающая сила держит конструкцию на плаву.

Почему вода не попадает внутрь корабля

Конечно, если в полости попадет вода, то корабль неизбежно пойдет ко дну. Чтобы этого не произошло, в той части конструкции, которая располагается под водой, делаются перегородки. В итоге образуются отсеки. При этом делаются они герметичными. Благодаря этому, вода, попавшая в один отсек, не может попасть во второй. Если же в корпусе появилась пробоина, то судно ко дну не пойдет. Затоплен будет только тот отсек, куда поступает вода. Остальные же останутся заполнены воздухом.

Как перевозят грузы

Корабль, как правило, имеет вес. И он равен массе воды, объем которой занимает судно в море. Конечно, океанский корабль вряд ли будет плавать пустым. Обычно с помощью судна перевозят не только людей, но и большие грузы. Пустой корабль весит значительно меньше. Значит, и осаживаться в воде он будет неглубоко. Если же судно нагрузить, то оно осядет больше. Но почему корабль не тонет даже с большим грузом?

Обычно на корпусе судна проводится черта – ватерлиния. Корабль не должен погружаться под воду ниже этого указателя. В противном случае он будет перегружен, и любая большая волна может затопить конструкцию.

fb.ru

Плавучесть

Почему одни вещества тонут в воде, а другие нет? И почему есть так мало веществ, способных плавать в воздухе (т. е. летать, см. статью «Полёт«)? Понимание законов плавучести (и погружения) позволяет инженерам строить корабли из металлов, которые тяжелее воды, и конструировать дирижабли и воздушные шары, способные плавать в воздухе. В спасательный жилет накачивают воздух, поэтому он помогает человеку держаться на воде.

Почему предметы плавают

Если погрузить тело в воду, оно вытеснит некоторое количество воды. Тело занимает место, где раньше была вода, и уровень поды поднимается. Если верить легенде, древнегреческий ученый Архимед (287 — 212 до н.э.), находясь в ванне, догадался, что по­груженное тело вытесняет равный объем воды. На средневековой гравюре изображен Архимед, совершивший свое открытие. Сила, с которой вода выталкивает погруженное и нее тело, называется силой выталкивания. Когда она равна весу тела, тело плавает и не тонет. Тогда вес тела равен весу вытесненной им воды. Пластмассовый утёнок очень лёгкий, поэтому достаточно небольшой силы выталкивания, чтобы удержать его на поверхности. Сила, направленная вниз (вес тела) за­висит от плотности тела. Плотность представляет собой отношение массы тела к его объему. Стальной шар тяжелее яблока того же размера, так как он плотнее. Частицы вещества в шаре упакованы более плотно. Яблоко может плавать в воде, но стальной шар тонет.

Чтобы тело не тонуло, его плотность должна быть меньше плотности воды. В противном случае силы выталкивания воды недостаточно, чтобы удержать тело на поверхности. Относительной плотностью тела называется его плотность по от­ношению к плотности воды. Относительная плотность воды равна единице, значит, если относительная плотность тела больше 1, оно утонет, а если меньше — будет плавать.

Закон Архимеда

Закон Архимеда гласит, что сила выталкивания равна весу жидкости, вытесненной погруженным в неё телом. Если сила вытал­кивания меньше веса тела, то оно тонет, если она равна весу тела, оно плавает.

Как плавают корабли

В наши дни корабли делают из стали, ко­торая в 8 раз плотнее воды. Не тонут же корабли потому, что их общая плотность меньше плотности воды. Корабль — это не цельный кусок стали (подробнее о стали в статье «Железо, сталь и прочие металлы«). В нем множества полостей, поэтому его вес распределяется по большому пространству, что и приводит к небольшой общей плотности. «Морской гигант» — одно из самых больших судов мира – весит 564 733 тонны. Благодаря большим размерам выталкивающая сила для него очень велика.

Если хотите увидеть, как действует сила выталкивания, бросьте в сосуд с водой глиняный шарик. Он утонет, и уровень воды поднимется. Отметьте фломастером новый уровень воды. Теперь слепите из этой же глина лодочку и осторожно опустите её на воду. Как видите, вода поднялась ещё выше. Лодочка вытесняет больше воды, чем шарик, а значит, и сила выталкивания больше.

Грузовые марки 

Грузовые марки — это линии, начерченные на борту судна. Они показывают, сколько груза судно может выдержать тех или иных условиях. Так, поскольку холодная вода плотнее теплой, она выталкивает судно сильнее. Значит, судно может взять па борт больше груза. Солёная вода плотнее пресной, следовательно, в пресной воде судно следует меньше нагружать. Изобрел грузовые марки Сэмюэл Плимсолл (1824-1898). Когда судно погружается в воду до соответствующей линии (см. рис.), оно считается полностью нагруженным. Значение буквенных символов: TF – пресная вода тропики, SF – пресная вода летом, T – солёная вода тропики, S – солёная вода летом, W – солёная вода зимой, WNA – Сев. Атлантика зимой.

Воздухоплавание 

Тела могут летать по тем же причинам, по каким они плавают в воде. На них действу­ет сила выталкивания воздуха. Плотность воздуха так мала, что в нем могут плавать очень немногие тела. Это, на­пример, баллоны с горячим воздухом, который менее плотен, чем холодный. Воздушные шары можно также наполнить гелием или другими газами, которые легче воз­духа.

Суда и лодки

Когда-то лодки и суда плавали, повинуясь силе ветра или мускульной силе человека. Создание двигателя позволило кораблестроителям использовать винты, толкающие судно сквозь толщу воды. В последнее время появились суда на подводных крыльях. «Великобритания» (построен в 1843 году) – первый железный корабль с гребным винтом. Его приводил в движение паровой двигатель. Корабль был также оснащён парусами. Контейнеровозы перевозят грузы в больших металлических ящиках. Их можно быстро погрузить на судно и сгрузить обратно при помощи кранов. Одно судно может принять на борт до 2000 контейнеров. Танкеры перевозят нефть и про чие жидкости в баках, расположенных в трюмах. Некоторые танкеры в 20 раз длиннее теннисного корта. 

Подводные лодки 

Подводные лодки погружаются и всплывают, изменяя свою относительную плотность. У них на борту есть большие контейнеры – балластные резервуары. Когда из них уходит воздух и внутрь закачивается вода, плотность лодки увеличивается и она погружается. Чтобы всплыть на поверхность, экипаж удаляет из резервуаров воду и накачивает туда воздух. Плотность вновь уменьшается и лодка всплывает. Балластные резервуары помещаются между внешним корпусом и стенками внутреннего отсека. Экипаж живёт и работает во внутреннем отсеке. Подводная лодка оснащена мощными винтами, которые позволяют ей двигаться сквозь толщу воды. На некоторых лодках установлены атомные реакторы (см. статью «Ядерная энергия и радиоактивность«).

www.polnaja-jenciklopedija.ru

Почему корабль плавает » Детская энциклопедия (первое издание)

Паруса и такелаж. Надстройки и рубки Двигатели и движители

Величайший ученый древности Архимед открыл один из основных законов физики, так и названный «законом Архимеда».

Именно на этом законе и основана конструкция всех видов судов, в том числе и подводных лодок. Судостроителям приходится так рассчитывать корпус всякого корабля, чтобы при погружении его в воду до определенного, заранее заданного уровня (до грузовой ватерлинии) вес вытесненной воды оказался бы равным весу судна с его грузом.

Такую задачу удается решить потому, что внутри корпуса корабля много пространства, заполненного воздухом: помещения для жилья, грузовые трюмы, погреба, служебные помещения. Кроме того, на корабле много предметов изготовлено из дерева, пластмасс, затем есть мазут и масла. Все это легче воды. Даже при значительном возвышении корпуса корабля над водой вес вытесненной воды равен весу корабля со всем его грузом. Этот вес вытесненной воды при заданном уровне осадки корабля и называется его водоизмещением.

Отсутствие крена судна означает, что равнодействующие сил поддержания и тяжести располагаются, компенсируя друг друга. Но стоит судну накрениться, как точка воздействия равнодействующей сил поддержания смещается. Возникает восстанавливающий момент — проявляется остойчивость судна. Чем ниже центр тяжести судна, тем больше может оно накреняться без потери остойчивости.

Когда подводная лодка находится в надводном положении, она плавает, как обычное судно. Ведь при незаполненных балластных цистернах она держится на воде, как надводный корабль. Вес вытесненной при этом воды равен весу подводной лодки со всем содержимым и называется ее надводным водоизмещением.

Если вес полностью погруженного в воду тела точно равен весу вытесненной при этом воды, то тело приобретает способность как бы висеть на любой глубине. Если же вес погруженного тела окажется больше веса вытесненной воды, то оно будет непрерывно и стремительно погружаться на все большую глубину и, наконец, упадет на дно. На этом основана способность подводных лодок погружаться под воду, держаться и передвигаться под водой, уходить на большую глубину. Для изменения веса у них служат балластные цистерны.

В нижней части корпуса подводной лодки расположены клапаны — кингстоны. Они есть и у надводных судов. Когда подводной лодке необходимо погрузиться, их открывают — и буквально за секунды в балластные цистерны врываются сотни тонн забортной воды. В это же время в цистернах открываются клапаны для выпуска воздуха, чтобы он не помешал заполнению. Подводная лодка тяжелеет и погружается. Ее водоизмещение увеличилось и стало «подводным». В этом особенность таких судов: у них два водоизмещения — надводное и подводное. Объем главных балластных цистерн так и рассчитан, чтобы при их заполнении подводный корабль погружался бы почти полностью. Стоит теперь заполнить еще одну, особую цистерну — ее называют цистерной быстрого погружения — и вес подводной лодки окажется больше веса вытесненной воды, она начнет очень быстро погружаться.

Казалось бы, способность держаться на воде, основанная на законе Архимеда, полностью обеспечивает кораблю необходимую плавучесть. Однако это не так.Основное свойство корабля — способность держаться на воде с допускаемым полным грузом и сохранять при этом заданный уровень осадки корпуса. Это плавучесть корабля. Если он перегружен, то начинает терять плавучесть — корпус его погружается глубже.

Перед нами игрушка — ванька-встанька. Сколько бы вы ни наклоняли ее, все равно она выпрямится. Корабль в большой степени обладает такой же способностью (когда в нем нет пробоин). В море корпус его наклоняется то на правый, то на левый борт, то на нос, то на корму (наклон на борт называется креном, а на нос или корму — дифферентом). Но каждый раз он снова принимает нормальное положение.

Это свойство судна называется остойчивостью. Если бы судно не обладало таким качеством, то любая причина, вызвавшая крен, привела бы к опрокидыванию корабля. Вода проникла бы внутрь, и гибель судна была бы неизбежна.

Тяжесть воды, ворвавшейся в корпус корабля через пробоину, также может наклонить его на борт, «зарыть» его в воду носом или кормой или одновременно сообщить ему и крен и дифферент. Все зависит от места, где образовалась пробоина. При этом быстро теряются и плавучесть и остойчивость.

Обеспечение необходимой остойчивости — важнейшая задача конструкторов при проектировании судна. Зависит остойчивость от расположения центра тяжести судна. Чем он ниже, тем больше остойчивость. Поэтому груженые суда, у которых центр тяжести ниже, устойчивее порожних, которым приходится брать балласт для повышения остойчивости. Но остойчивость меняется также в зависимости от величины груза и его размещения.

Русские ученые первые в мире разработали средства для придания кораблям третьего важнейшего качества — непотопляемости, т. е. способности держаться на воде, несмотря на частичную потерю плавучести или остойчивости. Начал эти работы С. О. Макаров, выдающийся русский флотоводец. Он создал стройную систему водоотливного и осушительного оборудования корабля. По всей длине второго днища укладывались две трубы: отливная, с диаметром немного больше 25 см, и осушительная, с диаметром 127 см. Они имели отводы во все помещения корабля и соединялись с мощными насосами (помпами). Стало возможным быстро освобождать от воды или затоплять пространство между обоими днищами или любой отсек корабля. Благодаря этому, если появлялась необходимость, можно было увеличить или уменьшить глубину осадки корабля, увеличить или уменьшить его крен или дифферент. Если, например, корабль, получив пробоину, сильно накренялся, можно было быстро затопить противоположные отсеки и таким образом не дать ему опрокинуться.

Но это еще не все! Задача заключалась и в том, чтобы заранее правильно выбрать место для приложения этой силы, точно выбрать отсек или несколько отсеков для затопления при пробоине. Ведь во время аварии или боя каждая минута на счету и ошибка может оказаться роковой. И здесь на помощь С. О. Макарову пришел выдающийся ученый А. Н. Крылов. Он разработал специальные таблицы. Если корабль получил пробоину в определенной части корпуса, таблицы быстро и точно отвечали, останется ли судно «на плаву», потонет или опрокинется. Они также определяли, какое положение примет корабль, если он останется на поверхности моря, можно ли выровнять корабль и какие именно отсеки надо затопить для этого.

Пользование таблицами оказалось настолько простым, что инженеру-механику корабля достаточно проделать обыкновенные арифметические действия — и точное решение важнейшей задачи готово!

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Паруса и такелаж. Надстройки и рубки Двигатели и движители

.

de-ussr.ru

Почему корабли умеют плавать

У воды, как и у любой другой жидкости, есть свойство поддерживать предметы на плаву. Когда какой-нибудь предмет (например, палка) или человек попадает в воду, хочет он того или не хочет, на него начинает действовать выталкивающая из воды сила. Эта сила толкает предмет вверх. И если она окажется больше веса предмета, например, корабля, то корабль будет держаться на поверхности и не потонет — даже если это самый большой корабль. Но если корабль будет перегружен или, получив пробоину, наполнится водой, он затонет – вес предмета станет больше выталкивающей силы.

Попробуйте так:
Если пустой тазик опустить на поверхность воды в ванной, он будет плавать. Появляется выталкивающая сила, которая удерживает тазик на поверхности, и он плавает.
Если наполнить тазик водой, он потонет. Он станет слишком тяжелым, и вода не удержит его на поверхности.

Корабли строят так, что б они в воде не тонули.
Днище корабля специально делают такой формы, что когда корабль наклоняется вбок, он волей-неволей стремиться опять выпрямиться.
Палубы на корабле закрывают его нутро как хорошие крышки. Поэтому вода не попадает в него, и даже в самый сильный шторм корабль не становится заметно тяжелее. Конечно, если надежно задраены палубные люки.

Даже полностью груженое судно не тонет. Потому что его контроль-отметка – грузовая ватерлиния – всегда находится над водой.

Это интересно:
Но как же, все-таки, корабль, сделанный из стали, которая во много раз тяжелее воды, не тонет? Это одна из самых интересных загадок природы. Чтобы разгадать её, необходимо вспомнить старый закон Архимеда. Этот закон гласит: тело, погруженное в воду, выталкивается вверх с силой, равной весу вытесненной им жидкости. Из закона Архимеда становится понятным, что даже металлический предмет, если он имеет форму вроде таза и занимает большой объем, то может вытеснить собой большой объем воды. И этот предмет на самом деле будет погружаться в воду и вытеснять её до тех пор, пока вес вытесненной воды не сравняется с его собственным весом – вот вам и плавающий корабль! Однако не забывайте: если наполнить таз или кастрюлю водой, они станут такими тяжелыми, что быстренько потонут.

Похожие материалы

wheels-wings.com

Отправить ответ

avatar
  Подписаться  
Уведомление о