В чем отличие цифры от числа – Чем отличается число от цифры: математические и лингвистические различия

Содержание

Чем отличается цифра от числа? Определение цифры и числа

Те символы, которыми мы сейчас пользуемся для обозначения числа, придумали умные и находчивые жители Индии более 15 веков назад. Наши предки узнали о них от арабов, которые начали их использовать раньше других.

Чем отличается цифра от числа? Цифра происходит от арабского языка и имеет прямое значение «ноль» или «пустое место». Всего насчитывается 10 цифр, которые, в свою очередь, комбинируясь разными способами, составляют числа.

Различие цифры и числа

Для того чтобы понять, каково отличие между понятиями «число» и «цифра», нужно запомнить следующие постулаты:

  • Цифр всего десять: ноль, один, два, три, четыре, пять, шесть, семь, восемь, девять. Все остальные их комбинации – это числа.
  • Цифра – это составная часть числа. Сколько цифр в числе? Их может быть разное количество.
  • Каждая цифра – это знак, символ. Любое число – это количественная абстракция.

Арабская «сифра»

Цифра как слово имеет арабские корни.

Изначально на арабском это было слово «сифра», т. е. «ноль». Цифры представляют собой некие символы, которыми обозначаются числа. Цифры обозначаются следующим образом:

  • 0 - ноль;
  • 1 - один;
  • 2 - два;
  • 3 - три;
  • 4 - четыре;
  • 5 - пять;
  • 6 - шесть;
  • 7 - семь;
  • 8 - восемь;
  • 9 - девять.

Вышеперечисленные цифры называются арабскими.

Римская система счисления

Арабская система счисления в мире не одна. Существуют и другие системы. Каждая из них совершенно не похожа на другую.

К примеру, кроме арабской системы, очень популярна римская система счета. Но римские цифры пишутся иначе и ничем не напоминают арабские.

  • I - один;
  • II- два;
  • III - три;
  • IV - четыре;
  • V- пять;
  • VI- шесть;
  • VII - семь;
  • VIII - восемь;
  • IX - девять;
  • X - десять.

Как вы могли заметить, тут нет символа, обозначающего ноль. Так что в качестве цифры можно принять десятку.

Системы счисления

Система счисления – это некий вариант представления чисел.

К примеру, представьте, что перед вами лежит несколько яблок. Вы хотели бы узнать, сколько яблок лежат на столе? Для этого вы могли бы считать, загибая пальцы рук или делать зарубки на дереве. А могли бы вы и представить, что десять яблок – это одна корзинка, а одно яблоко – это одна спичка. Спички по ходу счета выкладывать на столе под одной.

В первом варианте подсчета число получилось в виде строки из зарубок на дереве (или загнутых пальцев рук), а во втором варианте подсчета – это был набор из корзинок и спичек. Слева должны быть емкости, а справа - спички.

Системы счисления бывают двух видов:

  1. Позиционные.
  2. Непозиционные.

Позиционные системы счисления бывают:

  • Однородными.
  • Смешанными.

Непозиционной называют такую систему счисления, в которой цифра в числе соотносится с такой величиной, которая не зависит от ее разряда. Поэтому, если у вас пять зарубок, то число будет равно пяти. Ибо каждой зарубке будет соответствовать одно яблоко.

Позиционной системой счисления является та, в которой цифра в числе будет зависеть от ее разряда.

Та система счисления, к которой мы привыкли – это десятичная система счета. Она позиционная.

Когда наши предки начали учиться считать, у них появилась идея записывать числа. изначально они использовали те самые зарубки на деревьях или камнях, где каждая черточка обозначала какой-либо предмет (одно яблоко, к примеру). Именно так и была изобретена единичная система счисления.

Единичная система счисления

Различие между цифрой и числом в единичной системе счисления в том, что число в этом случае равнозначно строке, состоящей из палочек. Количество палочек (зарубок на дереве) равняется значению числа.

К примеру, урожай из 50 яблок будет равен числу, состоящему из 50 палочек (черточек, зарубок).

Сколько цифр содержит число 50? Две цифры. Цифра 0 и цифра 5. Но количество яблок гораздо больше двух.

Основное неудобство в этой системе счисления – слишком длинная строка из черточек. А если бы урожай составлял 5 000 яблок? Действительно, записывать такое число неудобно. Прочтение тоже будет вызывать затруднения.

Поэтому позже наши предки научились группировать черточки по несколько штук (по 5, 10). И для каждой объединяющей группы был придуман специальный знак. Сначала для 5 и 10 использовали пальцы рук. А затем были придуманы определенные символы. Таким способом считать яблоки стало гораздо проще.

Древнеегипетская десятичная система счисления

Древние египтяне для того, чтобы обозначить числа, стали использовать специальные символы. Даже древние люди понимали, чем отличается цифра от числа.

Числа:

1, 10, 102, 103, 104, 105, 106, 107.

Итак, предки научились группировать различные знаки (символы). Египтяне избрали для своей группировки число десять, не изменяя цифру один.

В этом конкретном примере число десять – это основание десятичной системы счисления. А каждый знак в этой системе счисления – это число 10 в какой-либо степени.

Египтяне записывали числа, комбинируя эти знаки (символы). Если число не являлось степенью десяти, все недостающие знаки добавлялись путем повторения. Каждый символ мог повториться не больше девяти раз. Итог был равен сумме элементов числа.

Двоичная система счисления

Данная система счисления в настоящее время используется в вычислительной технике. Десятичная система счисления неудобна для тех машин, которые служат людям сегодня.

Двоичная система счисления использует всего две цифры:

  • Ноль – 0.
  • Один – 1.

В каждом разряде допустима только одна цифра — либо 0, либо 1. Чтобы перевести число из двоичной в десятичную систему счисления, нужно будет умножить все цифры по очереди на основание 2, которое возводят в степень, равную разряду.

Восьмеричная система счисления

Восьмеричная система счисления тоже часто применима в современной электронике. Как вы понимаете, тут применяют всего восемь цифр.

  • 0 – ноль;
  • 1 – один;
  • 2 – два;
  • 3 – три;
  • 4 – четыре;
  • 5 – пять;
  • 6 – шесть;
  • 7 – семь.

Чтобы перевести число в десятичную систему счисления, нужно каждый разряд данного числа умножать на 8 (в степени разряда числа).

Шестнадцатеричные цифры

Программисты и люди, профессия которых тесно связана с компьютерными машинами, используют шестнадцатеричную систему счисления.

  • 0 – 0;
  • 1 – 1;
  • 2 – 2;
  • 3 – 3;
  • 4 – 4;
  • 5 – 5;
  • 6 – 6;
  • 7 – 7;
  • 8 – 8;
  • 9 – 9;
  • A – 10;
  • B – 11;
  • C – 12;
  • D – 13;
  • E – 14;
  • F – 15.

Цифра и число

Число — это понятие, которое обозначает количество.

Цифра — это символ или знак, который обозначает число.

Количество цифр в числе может быть разным, от одного до бесконечности.

К примеру, дано число «семь», которое отражает количество чего-либо. Но это самое число мы записываем цифрой 7.

Определение цифры и числа на простом языке приведем ниже.

Числа необходимы для того, чтобы вести счет каких-либо предметов, замерять длину, измерять время, скорость и другие величины. А цифра — это такой символ, который показывает число визуально, понятно и наглядно.

Грубо говоря, цифру можно сравнить с буквой из алфавита, а слово - с числом. То есть существует всего 33 знака (символа) в русском языке для обозначения букв. С их помощью можно записать сколько угодно слов. И существует всего десять цифр для обозначения чисел.

Давайте наглядно разберем, чем отличается цифра от числа.

Для того чтобы написать число 587, мы будем использовать три цифры: 5, 8 и 7. Сами по себе цифры никак не могут отразить целое число. Этими же цифрами мы можем записать еще много разных чисел. К примеру 857, 875 878755 и так далее.

Когда правильно употреблять «число», а когда - «цифра»?

Если человек скажет: «Запишите, пожалуйста, число 7. А теперь прибавьте к нему 8». Этот вариант будет считаться грамотным и правильным.

Если вам скажут: «Запишите цифру 9. И отнимите 3», это неправильно и безграмотно. От цифры никак нельзя что-то отнять. Точно так же, как от буквы, например. Это же всего лишь символ, как от него можно вычесть какое-то количество? Правильно будет: «Запишите число 9…».

Вариант «Запишите цифру 23» также некорректен. Такой цифры просто не существует. Есть число 23, которое можно записать цифрами 2 и 3.

Какая разница ?

Итак, без счета мы свою жизнь не представим. Это бесспорно. В нашем мире уже никак не прожить без цифр и чисел. Но мы крайне редко думаем о том, с чем мы сейчас имеем дело – с цифрой или все-таки с числом.

Как мы уже выяснили ранее, цифра – это просто некий символ, знак, который принято использовать для того, чтобы что-то обозначить.

Число же показывает количество чего-либо с помощью этих самых знаков – цифр.

Цифра может быть не только составной частью числа, но и числом, точнее, его аналогом. Конечно, при условии, что она обозначает количество предметов до 9 включительно.

Главные выводы

Итак, чем же отличается цифра от числа:

  • Цифры – это некая единица счета от нуля до девяти включительно. Все остальные комбинации цифр –это числа.
  • Сколько цифр в числе, обозначающем одно и то же количество, зависит от системы счисления.
  • Каждое число создается из цифр.
  • Основное различие цифры и числа в том, что первое понятие абстрактно, это всего лишь символ, а второе выражает количество чего-либо.
  • Число и цифра разнятся в зависимости от системы счисления. Одна и та же цифра может обозначать разное число.

fb.ru

Число и Цифра - отличие и разница

Число и цифра отличие и разница. В первую очередь надо знать что, символы которые применяются для обозначения количество, придумали в индии 1500 годиков назад. Европейцы про эти символы узнали от арабов, потому что, раньше всех их начали применять арабы. А остальные народы, узнали про них от арабов.

Что значит слово цифра? Это слово арабского происхождения и означает ноль или пустое место. Их существует только десять. Они придуманы для обозначения числа. Вот перечень:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Правда их всего 10. Но ноль не используется при счёте. Поэтому счёт начинается так: один, два, три ............ и. д. Чем отличается число от цифры?

Давайте теперь посмотрим чем отличается число от цифры. Если не существовали бы цифры, не существовали бы и числа. Первое из них это 10. Чтобы написать десять нужны две цифры 1 и 0. Как раз поэтому и были нужны цифры, ими обозначают числа. Они отличаются от цифр тем что у них нет конца. Они начинаются от десяти и не кончаются. Например:

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 .... и. д.

Числа которые приведены здесь называют натуральными. В ряду натуральных чисел каждое предыдущее число больше на 1. Поэтому их невозможно сосчитать.

Кроме арабских чисел мы знаем еще римские. Римские тоже применяются для, обозначение количества. И этими числами также можно обозначить неограниченное количество. Но арабские гораздо практичные, поэтому римские числа заменили арабскими. Римские:

I, V, X, L, C, D, M

Были времена когда у людей не было систем счёта. Но спустя века люди начали их придумывать. Например у многих древных народов были алфавиты, они буквы алфавита использовали как числа. Но потом когда империи завоёвывали страны в тех странах начинали использовать те системы и символики которыми пользовались империи. Вот почему почти весь мир использовал римские числа. Но всредние века римский папа увидел арабскую систему цифр и понял что она гораздо практичнее чем римская система, и начал пропагандировать эту систему. Например система цифр была и у Майя, она тоже похожа на эти системы. Кстати её можно посмотреть в левом меню.

Этот сайт с каждым днём растёт, добавляется интересная информация и сервисы. Не забудьте его добавить в закладку своего браузера.

chislo-cifra.com

Разница между числом и цифрой?

Так часто пользуешься числами и цифрами, но какая между ними разница, до сих пор невдомек? Спокойно! После сегодняшнего разговора Ты ни за что не перепутаешь цифру с числом, да еще и друзьям об их различиях расскажешь.

5 30 т.

Готов узнать, чем отличаются цифры от чисел? Не будем тянуть единицу за чуб, а двойку за хвост, рассказываем!

Что такое цифра?

Чтобы разобраться в отличиях между числами и цифрами, для начала запомни несколько простых утверждений:

— Цифры — это единицы счета от 0 до 9, остальные все — числа.

— Числа состоят из цифр.

— Цифры являются знаками, а каждое число — это количественная абстракция.

Слово «цифра» происходит от арабского «сифр», что означает «ноль». Цифры — это знаки для записи чисел. Обычно цифра означает один из следующих графических знаков: 0 1 2 3 4 5 6 7 8 9. Это так называемые арабские цифры.

Однако кроме арабской существует много других систем счисления, и они настолько отличаются, что число одной из них может оказаться цифрой в другой.

Римские цифры, например, записывают так: I V X L C D M. Поэтому арабское число «10» в римской системе счисления будет цифрой «Х» (десять), которая обозначается латинской буквой.

Шестнадцатеричные цифры, которые чаще всего используют разработчики компьютеров и программисты, на письме обозначают следующим образом: 0 1 2 3 4 5 6 7 8 9 A B C D E F. В этой системе счисления арабские цифры от 0 до 9 соответствуют значениям от нуля до девяти, а шесть латинских букв A, B, C, D, E, F соответствуют значениям от десяти до пятнадцати.

Каждое число шестнадцатеричной системы счета записывается с помощью 16-ти цифр.

В некоторых языках (древнегреческом, церковнославянском, иврите) существует система записи чисел буквами.

Как написать цифры на иврите.

Что называют числом?

Число — это один из основных объектов математики, который используют для подсчета, измерения и маркировки.

Символы, применяемые для обозначения чисел, называются цифрами.

Кроме использования цифр при счете и измерении, ими пользуются для маркировки (к примеру, телефонный номер) и упорядочения (например, универсальный идентификационный номер ISBN).

Подытоживая выше сказанное, делаем вывод, что число может указывать на символ, слово или математическую абстракцию.

Но интересно, что кроме практического применения, числа имеют также культурное значение. На Западе, например, число 13 считают несчастливым, а «миллион» часто может означать просто «много».

Читай также:

Заметили орфографическую ошибку? Выделите её мышкой и нажмите Ctrl+Enter

pustunchik.ua

Чем отличается цифра от числа

Все знают, что есть цифры и числа. Но если спросить: «Чем отличается цифра от числа?«, то многие затруднятся с ответом.

Чтобы ответить на этот вопрос и понять в чём различие между цифрой и числом надо разобраться с понятиями, что такое цифра и что такое число.

Что такое цифра?

Цифра — это письменный знак, изображающий число.

Что значит слово цифра? Это слово арабского происхождения и означает ноль или пустое место. Их существует только десять. Они придуманы для обозначения числа. Цифр всего 10.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Что такое число?

Число — это основное математическое понятие.

Его используют для:

  • количественной характеристики;
  • сравнения;
  • обозначения нумерации объектов.

Числа записываются при помощи цифр. Различают несколько видов чисел.

В древнейшие времена цифры обозначали прямолинейными пометками. Палочки до сих пор используются для обозначения римских цифр. Римских цифр 7.

I, V, X, L, C, D, M

Римские числа также, как и арабские, образуются при помощи цифр, только в данном случае римских.

В римских числах желательно разбираться, т.к. они часто используются не только в школьном курсе математики, но и в жизни. Например, на циферблате часов.

Отличия числа от цифры

  1. С числами можно проводить различные математические действия. С цифрами такого делать нельзя.
  2. Число может быть отрицательным, дробным, в отличие от цифр.
  3. Количество арабских цифр всего 10 (римских — 7), а чисел — бесконечное множество, т.к. они состоят из цифр.

Надеюсь, что теперь вам всё понятно, и вы сможете без труда объяснить даже ребёнку, чем отличается число от цифры.

С уважением, Ольга Наумова

 

Спасибо, что поделились статьей в социальных сетях!


 

naymenok.ru

Чем число отличается от цифры

Что такое число, что такое цифра

Число — это количественная характеристика чего-либо. Вначале числа обозначались чёрточками. Но это неудобно: попробуйте безошибочно на неразлинованной бумаге написать двести пятьдесят пять чёрточек. То-то! К счастью, в Индии была придумана десятичная система счисления, позволяющая записывать любое натуральное число при помощи всего десяти знаков!

Некоторые знаки и символы для обозначения что-либо
0 1 2 3 4 5 6 7 8 9 - + × ∙ * : / ∕ ÷ = ≈ ≠ 🙂 🙁 ☀️ 🌥️ 🌧️ 🍎 🍒 🍓
Некоторые математические символы
0 1 2 3 4 5 6 7 8 9 - + × ∙ * : / ∕ ÷ = ≈ ≠
Арабские цифры (всего 10) для обозначения чисел
0 1 2 3 4 5 6 7 8 9

Из чего состоит число

Однозначные числа состоят только из одной цифры
0   1   2   3   4   5   6   7   8   9

Двузначные числа состоят только из двух цифр
10   11   12   13   14   15   16   …   97   98   99

Трёхзначные числа состоят только из трёх цифр
100   101   102   103   104   105   106   …   997   998   999

Четырёхзначные числа состоят только из четырёх цифр
1000   1001   1002   1003   1004   1005   1006   …   9997   9998   9999

…

Для записи числа 255 (Двести пятьдесят пять) нужно всего две цифры: «2» и «5». Цифра «5» используется дважды. Первая правая цифра в числе обозначает количество единиц (пять чёрточек), вторая — количество десятков (пять раз по десять чёрточек), третья — количество сотен (два раза по сто чёрточек), четвёртая — количество тысяч и т. д.

255 (Двести пятьдесят пять)
2 5 5
| | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
 
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |

Числа состоят не только из цифр. Также, например, используется символы «минус» или «запятая», отделяющая дробную часть.

Чтение и произношение целых чисел и десятичных дробей

Двести пятьдесят пять целых одна сотая
2 5 5 , 0 1
Миллиарды Сотни миллионов Десятки миллионов Миллионы Сотни тысяч Десятки тысяч Тысячи Сотни Десятки Единицы Десятые Сотые Тысячные Десятитысячные Стотысячные Миллионные

После двадцати числа имеют составное наименование.

256 (Двестипятьдесятшесть)
200 (Двести)
50 (Пятьдесят)
6 (Шесть)
1 один 11 одиннадцать 10 десять 100 сто
2 два 12 двенадцать 20 двадцать 200 двести
3 три 13 тринадцать 30 тридцать 300 триста
4 четыре 14 четырнадцать 40 сорок 400 четыреста
5 пять 15 пятнадцать 50 пятьдесят 500 пятьсот
6 шесть 16 шестнадцать 60 шестьдесят 600 шестьсот
7 семь 17 семнадцать 70 семьдесят 700 семьсот
8 восемь 18 восемнадцать 80 восемьдесят 800 восемьсот
9 девять 19 девятнадцать 90 девяносто 900 девятьсот

Число проговаривается по три цифры с соответствующим классом. Можно озвучить очень большие числа.

256 (Двести пятьдесят шесть)
256 000 (Двести пятьдесят шесть тысяч)
256 256 (Двести пятьдесят шесть тысяч двести пятьдесят шесть)
2 256 256 (Два миллиона двести пятьдесят шесть тысяч двести пятьдесят шесть)
ноль 0 0
тысяча 1031 000
миллион 1061 000 000
миллиард 1091 000 000 000
триллион 10121 000 000 000 000
квадриллион 10151 000 000 000 000 000
квинтиллион 10181 000 000 000 000 000 000
секстиллион 10211 000 000 000 000 000 000 000
септиллион 10241 000 000 000 000 000 000 000 000
октиллион 10271 000 000 000 000 000 000 000 000 000
нониллион 10301 000 000 000 000 000 000 000 000 000 000
дециллион 10331 000 000 000 000 000 000 000 000 000 000 000

В десятичных дробях произносится

  1. число до запятой,
  2. слово «целых» или «целая» (подразумевается «целая единица»),
  3. число после запятой,
  4. разряд крайней справа цифры (подразумевается «часть единицы»).
256,01 (Двести пятьдесят шесть целых единиц одна сотая часть единицы)

В бесконечных периодических десятичных дробях произносится

  1. число до запятой,
  2. слово «целых» или «целая»,
  3. число после запятой до периода,
  4. разряд крайней справа цифры перед периодом,
  5. слово «и»,
  6. число периода,
  7. слово «в периоде»
5,(6) (Пять целых и шесть в периоде)
0,1(15) (Ноль целых одна десятая и пятнадцать в периоде)

Классическая запись чисел римскими цифрами

 = 

До арабских цифр использовали римские цифры. Чтобы не сбиться со счёта при написании чёрточек, выделяли сначала каждую пятую, а затем и каждую десятую чёрточку. Со временем запись «| | | | V | | | | X | | | | V | | | | X | | | | V |» уменьшилась до «XXVI».

Римские цифры, которые имеют большее значение, стоят в числе левее тех, у кого значение меньше. Их значения складываются (VI = 5 + 1 = 6). Цифры «V», «L», «D» не повторяются.

Исключения: с XIX века сочетания «IV», «IX», «XL», «XC», «CD», «CM». Во избежание четырёхкратного повторения одной цифры (неверно: «IIII»), в них цифра с большим значением стоит правее цифры с меньшим значением и из большего значения вычитается меньшее (IV = 5 - 1 = 4).

I один X десять C сто M одна тысяча
II два XX двадцать CC двести MM две тысячи
III три XXX тридцать CCC триста MMM три тысячи
IV четыре XL сорок CD четыреста
V пять L пятьдесят D пятьсот
VI шесть LX шестьдесят DC шестьсот
VII семь LXX семьдесят DCC семьсот
VIII восемь LXXX восемьдесят DCCC восемьсот
IX девять XC девяносто CM девятьсот
CCLVI (Двестипятьдесятшесть)
CC (Двести)
L (Пятьдесят)
VI (Шесть)

Какими бывают числа (школьная программа)

Натуральные числа — это целые положительные числа, возникшие при счёте предметов
1   2   3   …   98   99   100   …
Простые числа — это натуральные числа, которые делятся без остатка только на два натуральных числа: 1 и само себя (единица не является простым числом)
2    3   5   …   83   89   97   …

Составные числа — это натуральные числа, которые делятся без остатка на три и более натуральных числа (единица не является составным числом)
4    6   8   …   98   99   100   …

Круглые числа — это натуральные числа, которые оканчиваются на 0
10   20   30   …   100   …
Целые числа — это натуральные числа, ноль и числа, противоположные натуральным (отрицательные)
…   -100   -99   -98   …   -2   -1   0   1   2   …   98   99   100   …
Чётные числа — это целые числа, которые делятся на число 2 без остатка
…   -100   -98   -96   …   -4   -2   0   2   4   …   96   98   100   …

Нечётные числа — это целые числа, которые не делятся на число 2 без остатка
…   -99   -97   -95   …   -3   -1   1   3   …   95   97   99   …
Вещественные числа — это рациональные и иррациональные числа
…   -100,5   …   -5,(6)   …   -3   …   -2
… -2 … -1 … - … -0,1(15) … -0,002 … -0,001 … 0 … 0,001 … 0,002 … 0,1(15) … … 1 … √2 … φ … 2 … e … 2 … 3 … π … 5,(6) … 100,5 …
Рациональные числа — это целые числа, обыкновенные дроби, конечные или бесконечные периодические десятичные дроби, которые можно представить обыкновенной дробью 
, где числитель m — целое число, а знаменатель n — натуральное число … -100,5 … -5,(6) … -3 … -2 … -2 … -1 … - … -0,1(15) … -0,002 … -0,001 … 0 … 0,001 … 0,002 … 0,1(15) … … 1 … 2 … 2 … 3 … 5,(6) … 100,5 … Иррациональные числа — это бесконечные непериодические десятичные дроби, которые нельзя представить обыкновенной дробью … π … e … φ … √2 …
Обыкновенная (простая) дробь — это запись рационального числа в виде ±
или ±m/n, где n ≠ 0 … - … - … - … - … - … - … - … - … - … - … … … … … … … … … … … … Смешанная дробь — это сумма целого числа отличного от нуля и правильной дроби без знака плюс между ними … -100 … -5 … -2 … 2 … 5 … -100 …
Правильная дробь — это обыкновенная дробь, которая меньше 1, так как m < n
…   - 
… - … - … - … … … … … … Неправильная дробь — это обыкновенная дробь, которая равна или больше 1, так как m ≥ n … - … - … - … - … - … - … … … … … … …
Десятичная дробь — это дробь, представленная в десятичной записи, так как  n = 10z, где z — натуральное число 
…   -100,5   …   -5,6666666666…   …   -2,8   …   -0,8571428571…   …   -0,1151515151…   …   -0,002   …   -0,001   …   0,001   …   0,002   …   0,1(15)   …   0,(857142)   …   1,4142135623…   …   1,6180339887…   …   2,7182818284…   …   2,8   …   3,1415926535…   …   5,(6)   …   100,5   …
Конечная десятичная дробь имеет конечное количество цифр после запятой
…   -100,5   …   -2,8   …   -0,002   …   -0,001   …   0,001   …   0,002   …   2,8   …   100,5   …

Бесконечная десятичная дробь не имеет конечное количество цифр после запятой
…   -5,6666666666…   …   -0,8571428571…   …   -0,1151515151…   …   0,1(15)   …   0,(857142)   …   1,4142135623…   …   1,6180339887…   …   2,7182818284…   …   3,1415926535…   …   5,(6)   …
Бесконечная периодическая десятичная дробь — дробь, у которой начиная с некоторого места после запятой нет иных символов, кроме периодически повторяющейся группы цифр
…   -5,6666666666…   …   -0,8571428571…   …   -0,1151515151…   …   0,1(15)   …   0,(857142)   …   5,(6)   …

Бесконечная непериодическая десятичная дробь
…   1,4142135623…   …   1,6180339887…   …   2,7182818284…   …   3,1415926535…   …
Положительные числа — это числа, которые больше нуля (ноль не является положительным числом)
…   0,001   …   0,002   …   0,1(15)   …   
… 1 … √2 … φ … 2 … e … 2 … 3 … π … 5,(6) … 100,5 … Отрицательные числа — это числа, которые меньше нуля (ноль не является отрицательным числом) … -100,5 … -5,(6) … -3 … -2 … -2 … -1 … - … -0,1(15) … -0,002 … -0,001 …

shpargalkablog.ru

Чем цифры отличаются от чисел: отличия и виды

Цифрами люди начали пользоваться очень давно. Для этого, в основном, они использовали пальцы рук. Люди просто показывали на пальцах количество объектов, о которых они хотели сообщить. Так возникли и постепенно закрепились названия цифр: 1, 2, 3, 4, 5, 6, 7, 8, 9. А как быть, если объектов больше, чем пальцев? Тогда приходилось показывать руки по нескольку раз, что, конечно, не всех устраивало. И тогда умники не то в Индии, не то в арабском мире, придумали еще одну цифру – ноль, что означает отсутствие объектов, а вместе с ней и десятичную систему счисления. Десятичную потому, что используется десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Число и десятичная система счисления

Числа отличаются от цифр тем, что могут состоять как из одной, так и из нескольких цифр, записанных подряд. Десятичная система счисления – это позиционная система. Значение цифры зависит от места (позиции), которое она занимает в числе. Цифры – это тоже числа, но состоящие из одной цифры, которая занимает позицию в разряде единиц. Если необходимо записать число, следующее по порядку за 9, то нужно перейти к следующему разряду – разряду десятков.

Таким образом следующим числом будет 10 – один десяток, ноль единиц, 11 – один десяток одна единица, 12 – один десяток две единицы, 25 – два десятка пять единиц и так далее. После числа 99 идет число 100 – одна сотня ноль десятков ноль единиц. Дальше добавляются разряды тысяч, десятков тысяч, сотен тысяч, миллионов и т.д. Таким образом, добавляя слева новые разряды, мы можем пользоваться все большими и большими числами.

Дробные числа

От пересчета предметов, который осуществляется с помощью натуральных чисел, человечество естественно перешло к счету мер длины, веса и времени. И тогда возникла проблема как считать нецелые части. Естественным образом появились обыкновенные дроби: половина, треть, четверть, пятая часть и т.п. Их стали записывать в виде числителя и знаменателя: в знаменателе записывали на сколько частей поделено целое, а в числителе – сколько таких частей берется. Например, половина – это 1/2, треть – 1/3, четверть – 1/4 и т.д.

Десятичные дроби

Поскольку человечество все больше использовало десятичную систему счисления, то для приведения записей дробных чисел к десятичному виду, дроби со знаменателями в виде разрядных единиц 10, 100, 1000, 10 000 и т.д. начали записывать в виде десятичных дробей, где дробная часть отделялась от целой запятой или точкой. Например, 1/10 = 0.1, 1/100 = 0.01, 1/1000 = 0.001, 1/10000 = 0.0001. Более того, обычные дроби стали переводить в десятичный вид делением числителя на знаменатель и если точная замена не удавалась, то производилась приблизительно, с удовлетворяющей практические потребности людей точностью.

Римские цифры

Не надо думать, что привычная нам десятичная система счисления, с десятью цифрами, использовалась всегда и везде. Например, в знаменитой Римской империи использовались совсем другие цифры, которые и сейчас иногда используются для нумерации глав в книгах, обозначения столетий и т.п. Эти цифры мы называем римскими и было их всего семь: І – один, V – пять, Х – десять, L – пятьдесят, С – сто, D – пятьсот, М – тысяча. С помощью этих семи цифр и записывались все остальные числа. Если меньшая цифра стояла перед большей, то она вычиталась из большей, а если после большей, то прибавлялась к ней. Некоторые одинаковые цифры могут повторятся не более трех раз подряд. Например, II – два, III – три, IV – четыре (5 – 1 = 4), VI – шесть (5 + 1 = 6).

Другие системы счисления

С началом развития вычислительной техники начали использоваться и другие системы счисления, более близкие машинам, нежели людям. Например, естественной для компьютеров является двоичная система счисления, состоящая из двух цифр: 0 и 1. Для примера запишем несколько чисел подряд, используя двоичную систему счисления: 0 – ноль, 1 – один, 10 – два (ноль единиц и одна двойка), 11 – три (одна единица и одна двойка), 100 – четыре (ноль единиц, ноль двоек, одна четверка), 101 – пять (одна единица, ноль двоек, одна четверка) и т.д. То есть разрядные единицы здесь отличаются в два раза: двойки, четверки, восьмерки и т.д.

Кроме двоичной системы счисления в вычислительной технике и программировании сейчас широко используется восьмеричная и шестнадцатеричная системы.

vchemraznica.ru

Чем отличается цифра от числа? Определение цифры и числа

Те символы, которыми мы сейчас пользуемся для обозначения числа, придумали умные и находчивые жители Индии более 15 веков назад. Наши предки узнали о них от арабов, которые начали их использовать раньше других.

Чем отличается цифра от числа? Цифра происходит от арабского языка и имеет прямое значение «ноль» или «пустое место». Всего насчитывается 10 цифр, которые, в свою очередь, комбинируясь разными способами, составляют числа.

Различие цифры и числа

Для того чтобы понять, каково отличие между понятиями «число» и «цифра», нужно запомнить следующие постулаты:

  • Цифр всего десять: ноль, один, два, три, четыре, пять, шесть, семь, восемь, девять. Все остальные их комбинации – это числа.
  • Цифра – это составная часть числа. Сколько цифр в числе? Их может быть разное количество.
  • Каждая цифра – это знак, символ. Любое число – это количественная абстракция.

Арабская «сифра»

Цифра как слово имеет арабские корни.

Изначально на арабском это было слово «сифра», т. е. «ноль». Цифры представляют собой некие символы, которыми обозначаются числа. Цифры обозначаются следующим образом:

  • 0 - ноль;
  • 1 - один;
  • 2 - два;
  • 3 - три;
  • 4 - четыре;
  • 5 - пять;
  • 6 - шесть;
  • 7 - семь;
  • 8 - восемь;
  • 9 - девять.

Вышеперечисленные цифры называются арабскими.

Римская система счисления

Арабская система счисления в мире не одна. Существуют и другие системы. Каждая из них совершенно не похожа на другую.

К примеру, кроме арабской системы, очень популярна римская система счета. Но римские цифры пишутся иначе и ничем не напоминают арабские.

  • I - один;
  • II- два;
  • III - три;
  • IV - четыре;
  • V- пять;
  • VI- шесть;
  • VII - семь;
  • VIII - восемь;
  • IX - девять;
  • X - десять.

Как вы могли заметить, тут нет символа, обозначающего ноль. Так что в качестве цифры можно принять десятку.

Системы счисления

Система счисления – это некий вариант представления чисел.

К примеру, представьте, что перед вами лежит несколько яблок. Вы хотели бы узнать, сколько яблок лежат на столе? Для этого вы могли бы считать, загибая пальцы рук или делать зарубки на дереве. А могли бы вы и представить, что десять яблок – это одна корзинка, а одно яблоко – это одна спичка. Спички по ходу счета выкладывать на столе под одной.

В первом варианте подсчета число получилось в виде строки из зарубок на дереве (или загнутых пальцев рук), а во втором варианте подсчета – это был набор из корзинок и спичек. Слева должны быть емкости, а справа - спички.

Системы счисления бывают двух видов:

  1. Позиционные.
  2. Непозиционные.

Позиционные системы счисления бывают:

  • Однородными.
  • Смешанными.

Непозиционной называют такую систему счисления, в которой цифра в числе соотносится с такой величиной, которая не зависит от ее разряда. Поэтому, если у вас пять зарубок, то число будет равно пяти. Ибо каждой зарубке будет соответствовать одно яблоко.

Позиционной системой счисления является та, в которой цифра в числе будет зависеть от ее разряда.

Та система счисления, к которой мы привыкли – это десятичная система счета. Она позиционная.

Когда наши предки начали учиться считать, у них появилась идея записывать числа. изначально они использовали те самые зарубки на деревьях или камнях, где каждая черточка обозначала какой-либо предмет (одно яблоко, к примеру). Именно так и была изобретена единичная система счисления.

Единичная система счисления

Различие между цифрой и числом в единичной системе счисления в том, что число в этом случае равнозначно строке, состоящей из палочек. Количество палочек (зарубок на дереве) равняется значению числа.

К примеру, урожай из 50 яблок будет равен числу, состоящему из 50 палочек (черточек, зарубок).

Сколько цифр содержит число 50? Две цифры. Цифра 0 и цифра 5. Но количество яблок гораздо больше двух.

Основное неудобство в этой системе счисления – слишком длинная строка из черточек. А если бы урожай составлял 5 000 яблок? Действительно, записывать такое число неудобно. Прочтение тоже будет вызывать затруднения.

Поэтому позже наши предки научились группировать черточки по несколько штук (по 5, 10). И для каждой объединяющей группы был придуман специальный знак. Сначала для 5 и 10 использовали пальцы рук. А затем были придуманы определенные символы. Таким способом считать яблоки стало гораздо проще.

Древнеегипетская десятичная система счисления

Древние египтяне для того, чтобы обозначить числа, стали использовать специальные символы. Даже древние люди понимали, чем отличается цифра от числа.

Числа:

1, 10, 102, 103, 104, 105, 106, 107.

Итак, предки научились группировать различные знаки (символы). Египтяне избрали для своей группировки число десять, не изменяя цифру один.

В этом конкретном примере число десять – это основание десятичной системы счисления. А каждый знак в этой системе счисления – это число 10 в какой-либо степени.

Египтяне записывали числа, комбинируя эти знаки (символы). Если число не являлось степенью десяти, все недостающие знаки добавлялись путем повторения. Каждый символ мог повториться не больше девяти раз. Итог был равен сумме элементов числа.

Двоичная система счисления

Данная система счисления в настоящее время используется в вычислительной технике. Десятичная система счисления неудобна для тех машин, которые служат людям сегодня.

Двоичная система счисления использует всего две цифры:

  • Ноль – 0.
  • Один – 1.

В каждом разряде допустима только одна цифра — либо 0, либо 1. Чтобы перевести число из двоичной в десятичную систему счисления, нужно будет умножить все цифры по очереди на основание 2, которое возводят в степень, равную разряду.

Восьмеричная система счисления

Восьмеричная система счисления тоже часто применима в современной электронике. Как вы понимаете, тут применяют всего восемь цифр.

  • 0 – ноль;
  • 1 – один;
  • 2 – два;
  • 3 – три;
  • 4 – четыре;
  • 5 – пять;
  • 6 – шесть;
  • 7 – семь.

Чтобы перевести число в десятичную систему счисления, нужно каждый разряд данного числа умножать на 8 (в степени разряда числа).

Шестнадцатеричные цифры

Программисты и люди, профессия которых тесно связана с компьютерными машинами, используют шестнадцатеричную систему счисления.

  • 0 – 0;
  • 1 – 1;
  • 2 – 2;
  • 3 – 3;
  • 4 – 4;
  • 5 – 5;
  • 6 – 6;
  • 7 – 7;
  • 8 – 8;
  • 9 – 9;
  • A – 10;
  • B – 11;
  • C – 12;
  • D – 13;
  • E – 14;
  • F – 15.

Цифра и число

Число — это понятие, которое обозначает количество.

Цифра — это символ или знак, который обозначает число.

Количество цифр в числе может быть разным, от одного до бесконечности.

К примеру, дано число «семь», которое отражает количество чего-либо. Но это самое число мы записываем цифрой 7.

Определение цифры и числа на простом языке приведем ниже.

Числа необходимы для того, чтобы вести счет каких-либо предметов, замерять длину, измерять время, скорость и другие величины. А цифра — это такой символ, который показывает число визуально, понятно и наглядно.

Грубо говоря, цифру можно сравнить с буквой из алфавита, а слово - с числом. То есть существует всего 33 знака (символа) в русском языке для обозначения букв. С их помощью можно записать сколько угодно слов. И существует всего десять цифр для обозначения чисел.

Давайте наглядно разберем, чем отличается цифра от числа.

Для того чтобы написать число 587, мы будем использовать три цифры: 5, 8 и 7. Сами по себе цифры никак не могут отразить целое число. Этими же цифрами мы можем записать еще много разных чисел. К примеру 857, 875 878755 и так далее.

Когда правильно употреблять «число», а когда - «цифра»?

Если человек скажет: «Запишите, пожалуйста, число 7. А теперь прибавьте к нему 8». Этот вариант будет считаться грамотным и правильным.

Если вам скажут: «Запишите цифру 9. И отнимите 3», это неправильно и безграмотно. От цифры никак нельзя что-то отнять. Точно так же, как от буквы, например. Это же всего лишь символ, как от него можно вычесть какое-то количество? Правильно будет: «Запишите число 9…».

Вариант «Запишите цифру 23» также некорректен. Такой цифры просто не существует. Есть число 23, которое можно записать цифрами 2 и 3.

Какая разница ?

Итак, без счета мы свою жизнь не представим. Это бесспорно. В нашем мире уже никак не прожить без цифр и чисел. Но мы крайне редко думаем о том, с чем мы сейчас имеем дело – с цифрой или все-таки с числом.

Как мы уже выяснили ранее, цифра – это просто некий символ, знак, который принято использовать для того, чтобы что-то обозначить.

Число же показывает количество чего-либо с помощью этих самых знаков – цифр.

Цифра может быть не только составной частью числа, но и числом, точнее, его аналогом. Конечно, при условии, что она обозначает количество предметов до 9 включительно.

Главные выводы

Итак, чем же отличается цифра от числа:

  • Цифры – это некая единица счета от нуля до девяти включительно. Все остальные комбинации цифр –это числа.
  • Сколько цифр в числе, обозначающем одно и то же количество, зависит от системы счисления.
  • Каждое число создается из цифр.
  • Основное различие цифры и числа в том, что первое понятие абстрактно, это всего лишь символ, а второе выражает количество чего-либо.
  • Число и цифра разнятся в зависимости от системы счисления. Одна и та же цифра может обозначать разное число.

autogear.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о